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Wavelet-like orthonormal bases for the lowest Landau level 

J-P Antoinet and F Bagatellot$§ 
Institut de Physique Th&nique, Univenii6 Catholique de Lou-, B-1348 Lnuvain-la-Neuve, 
Belgium 

Received 16 July 1593 

Abstract. As a first step in the description of a two-dimensional electron gas in a magnetic 
field, such as encountered in the fractional quantum Hall effect, we discuss a general procedure 
for constructing an orthonormal basis for the lowest landau level, starting from an arbitrary 
orthonormal basis in LZ(R). We discuss in detail two relevant examples coming from wavelet 
analysis. the Ha- and the Littlewood-Paley bases. 

1. Introduction 

The fractional quantum Hall effect (FQHE) has received much attention in recent years, 
essentially for its potential practical applications, but this strong interest has not been 
sufficient so far for producing a theory capable of explaining all the experimental data 
(see [1,2] for a review and the original references). 

The system to be considered is a (quasi)-planar gas of electrons ,in a strong magnetic 
field perpendicular to the plane. The first problem to tackle for discussing the static features 
of the FQHE is to find the ground state of the system, and this is already a very hard problem. 
Two main methods have been proposed in the literature to that effect. The first one is a 
Hartree-Fock approach to a system of N two-dimensional electrons (see for instance [3- 
51). This picture gives good energy values for small or high electron densities. In the 
intermediate range, however, the best results are obtained with the Laughlin wavefunction 
161, which is derived by a variational technique based on a non-mean-field approach to the 
same two-dimensional gas of electrons. We will consider here the first method only. 

The first step is to select an adequate wavefunction for a single electron in the magnetic 
field. As is well known [Z], the energy levels, the so-called Landau levels, are infinitely 
degenerate, and there arises the problem of finding a good basis in the corresponding Hilbert 
subspace. This is crucial for allowing an easy computation of the energy levels of the whole 
system, in the presence of perturbations. In particular, the ground state we are looking for 
belongs to the lowest Landau level (LLL). The aim of this paper is to discuss a general way 
of obtaining an orthogonal basis for the LLL. 

It is a standard result [7] that the Hamiltonian of a single electron confined in the xy-  
plane and subjected to a strong magnetic field in the z-direction can be transformed into 
that of a harmonic oscillator. In the symmetric gauge we have 

1 2  (1.1) f f o  = ;(P* - ?.Y) + 3 ( P Y  + +)*. 
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Introducing the canonical variables 

this can be written in the form 

Ho = $ ( e R  + Pa). 
Here and in the following, we will use units such that fr = M = elHl/c = 1, 
which also implies that the cyclotron frequency U, = elHljMc and the magnetic length 

The eigenstates of the Hamiltonian (1.1) can be found explicitly 181, and they have the 

(1.4) 

= (hc/elHI)'p are both equal to one. 

following form: 

Q ~ " ( x ,  y )  = (~"+'+lnm!n!)-'/2e(x'+~)/~(a~ + ia,)m (8, - iay)ne++y')/4 

corresponding to the eigenvalues 

(1.5) 1 E,, = E. = n +  5 .  

Thus we see that the energy levels are all degenerate in m, so that the ground level (LLL) 
is spanned by the set {a,&, y ) } ,  which forms an orthonormal basis in the LLL. For these 
wavefunctions, the mean value of the distance from the origin, r m, increases 
with m [7,8], so that the functions %,o(x, y )  are not very well localized. Yet the physics 
of the problem requires that the wavefunctions he fairly well localized, in particular for 
approaching the limit of the celebrated Wigner crystal [5]. Thus arises the LLL basis problem 
that we now discuss. 

2. The LLL basis problem 

While the solutions (1.4) can be found very easily directly in the configuration space, it is 
not easy at all to find another basis, orthogonal or not, spanning the same energy level. An 
efficient and elegant method, based on a technique introduced in [9], has been discussed in 
some detail in [5] and [7], and we will use it here. The transformation (1.2) can be seen 
as a part of a canonical transformation from the variables x ,  y ,  px, py into the new ones 
Q7 P, Q', PI, where 

(2.1) 

(2.2) 
It is shown in [7,9] that a wavefunction in the ( x ,  y)-space is related to its PP'-expression 
by the formula 

I P = py - 5.x Q = p z +  f y .  
These operators satisfy the following commutation relations: 

[Q, PI = [Q', P'] = i [Q, P'l = [Q', PI = [Q, Q'] = [P, P'I =O. 

The usefulness of the P PI-representation stems from the expression (1.3) of Ho. Indeed, 
in this representation, the Schrodinger equation admits eigenvectors Y(P, P') of Ho of the 
form Y(P, P') = f ( P ' ) h ( P ) .  Thus the ground-state wavefunction of (1.3) must have the 
form fo(P')h(P), where 

(2.4) -l/4e-Pn/2 fO(P') = Jc 
and the function h ( P )  is arbitrw, which manifests the degeneracy of the LU. 
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Choosing h ( P )  = f o ( P ) ,  the authors of [5] show, using (2.3), that the corresponding 
wavefunction in the ( x ,  y)-space is nothing but (Poo(x. y )  as defined in (1.4). They also 
construct a complete set of functions of the LLL with Gaussian localization, centred on 
the sites of a regular two-dimensional lattice. However, this basis is not orthogonal, and, 
in addition, each vector has a well defined, fixed (essential) support, so that there is no 
possibility of modifying the mutual overlap for fixed electron density. This complete set 
of functions of the LLL is obtained simply by acting on (Pi&, y )  itself with the translation 
operators T(ai )  defined by 

T(a i )  = exp (i&. ai) i = 1.2 (2.5) 
where II, = (e, P) and ai are the lattice basis vectors. The set obtained in this way is 
still in the LLL since the operators T(ai )  commute with Ho, by virtue of the commutation 
relations (2.2). Moreover, [T(al) ,  T(az)] = 0 if the area of the cell of the lattice is such that 
al,az, -al,azs = 2r .  Completeness of the set is proven by showing its unitary equivalence 
with the set of coherent states constructed as eigenstates of the operator A 2-'Iz(Q+iP) 
with minimal lattice cell area, n, and by using the well known completeness of coherent 
states [IO] (this equivalence, which is already clear on the expression (1.4), was first 
discussed by Boon [ll]). Orthogonality, however, has to be enforced, since coherent states 
are in general not mutually orthogonal, and this spoils much of the simplicity of the basis 
functions, and in particular the localization properties for intermediate fillings. 

Another approach, whose aim is to preserve the latter, and some sort of translation 
invariance, is due to Ferrari [12], who has constructed an orthonormal basis for the LLL by 
taking infinite superpositions of the above (coherent) states. The resulting basis vectors are 
Bloch functions, which may be made translation invariant over the nodes of a given lattice, 
typically triangular or hexagonal (remember that the Wigner crystal is a triangular lattice). 
Clearly this basis describes very well the two-dimensional low-density system of electrons 
of the FQHE, but its construction is rather involved and ad hoc. 

In the sequel of this paper, we will discuss other choices for the function h ( P ) ,  leading 
to very different orthonormal bases for the LLL. The key observation is that one wants basis 
wavefunctions which are both well localized  and orthogonal. Then obvious candidates 
are orthogonal wavelets,~ as discussed at length in [13]. Not only do they enjoy good 
localization properties, but the latter are easily controlled by varying the scale parameter, 
in contrast to the Gaussian-like functions of [5 ] .  In addition, wavelets seem well adapted to 
a physical problem which has an intrinsic hierarchical structure [14,15]. In particular, the 
relevant parameter, namely the filling factor, may take arbitrary rational values [16], and 
this suggests some sort of fkactal behavior, which again points to wavelets. 

More precisely, we will cons'unct bases for the lowest Landau level, via the 
transformation (2.3), starting from a general (orthogonal) basis in Lz(R), and then 
particularize to the case where that basis is taken to be an orthonormal (ON) basis of wavelets. 
Finally we will discuss in some detail the L E  bases corresponding to two standard wavelet 
bases, namely the Haar and the Littlewood-Paley bases [13]. For the convenience of the 
reader, we sketch ,in the appendix the essential aspects of the wavelet transform, and in 
p&cular the construction of an ON wavelet basis from a multiresolution analysis. 

We begin by briefly discussing some general ideas about the construction of an ON basis 
in the LLL, taking spline functions as an example, without going into details. A detailed 
discussion of the Haar and the Littlewood-Paley bases will be carried out in the next section. 

In the PPI-representation, restriction to the LLL forces the dependence on P' of the 
wavefunction to be that of (2.4), so that the Gaussian integration on P' in (2.3) can be 
performed exactly. Then, starting from a wavefunction qn(P, P') = fO(P')hn(P), where 
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(h.(P)} is an arbitrary ON basis in L2Q), we define a new set of functions by 

J-P Antoine and F Bagarello 

Then the set (h$')(x, y)) is a basis for the LLL since any wavefunction of the LLL can be 
written in the PP'-representation as the tensor product fo(P')h(P),  and the set (h,(P)] is 
a basis in L'(R). Orthogonality of the wavefunctions hi')(x, y) follows from the canonicity 
of the change of variables given in (1.2), (2.1) or simply by an explicit calculation of the 
matrix element (hnlhm), using the integral (2.6). 

We can conclude, therefore, that using the transformation (2.6), any (ON) basis in L'm) 
can be transformed into an (ON) basis for the LLL. 

Remark. The PP'-representation can be used in the same way to construct an (ON) basis 
of any Landau level, not necessarily the lowest one. This is achieved simply by replacing 
the Gaussian in (2.4) by the correct wavefunction for f o p ' ) .  Of course one must face the 
increasing difficulty of computing the integrals in (2.3). 

Example: linear spline. The linear spline function O(x)  is defined in the following way: 

As is well known [13], this function generates an orthonormal wavelet basis in L2(R), using 
the technique of multiresolution analysis, which is summarized in the appendix. First one 
constructs a function # ( x )  whose integer tranlates ( @ ( x  - n ) ]  are oahogonal for different 
integer values of n. Then one derives from # a function @ ( x )  which is the mother wavelet. 
In the present case one gets for the Fourier transform of @(x):  

Then the set (&,"(x))  5 [2-m/2+(2-mx - n), m, n E E ]  is an ON basis in Lz(R) 1131, so 
that, using (2.6), we could obtain an ON basis for the UL. The same steps can be repeated, 
for instance, for a general spline function, discussed again in [l3] or [19]. Here too, one 
may use multiresolution analysis in order to get an ON basis in L'fJR), and then the integral 
(2.6) will transform it into an ON basis for the LLL. 

3. The Haar basis 

In this section we will discuss in some detail the LLL basis generated by the Haar basis of 
wavelets. We start by introducing the mother wavelet 

This function gives an explicit example of a wavelet ON basis in L2@),  obtained via the 
usual formula 

(3.2) 
Of course, since h(x) is a discontinuous'function, its localization in frequency space is poor. 
However, since the transformation (2.6) is not a Fourier transform, it is not clear apriori that 
the corresponding functions {hgi(x,  y)] will also have a poor localization in both variables. 

h,,(x) = 2 - " Q - m x  - n) . 
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(4 . .  
Figure 1. (0) Dependence of lHm(x. y)I an x and y.  ( b )  Dependence of ]Hm(x,  y)l on x .  (c) 
Dependence of IH~i(x,y)l on y. 

In fact we will see below that it is not the case, by investigating the asymptotic behaviour 
of the basis functions. 

From (2.6) we get 

(3.3) 
Using standard results on Gaussian integrals 117,181, we find that 

-E(x-iy+Z"'n)- 8(x-iy+Zmn+2"')) (3.4) 

where B(z) = Q(z/&) and the error function Q(z) is defined by the integral 

2 I  
O(z) = erfz = - 1 e-" dt z E C. 

f i 0  

For m = n = 0, in particular, this gives 



2.416 

The modulus of Hw(x,  y) is plotted in figures l(u), l(b) and I(c). The difference between 
the three figures is in the point of view of the observer. In particular, figure I(b) shows 
the x-axis, while in figure l(c) only the y-axis is shown. Therefore figure l (b)  yields the 
behaviour of IHw(x, y)l in x ,  while figure I(c) gives the behaviour of the function in y. 
Clearly the function H&, y) is much better localized in the x variable than in y. 

It is interesting to compare these graphical results with the asymptotic behaviour of the 
function Hw, which may be deduced from the asymptotic expansion of the error function 
given in 117,181: 

J-P Antoine and F Bagarello 

@(z) N 1 - Lql +o($))  z -+ 00 largzl< -. 3n f i z  4 

Thus we find the following asymptotic expansion for the function Hw(x, y): 

(3.6) Hw(x, Y) 2ni14 

which displays the Gaussian localization of the wavefunction in the variable x and shows 
the rather poor localization in y. 

An analogous behaviour can be obtained for the generic function H,.(x. y) given in 
(3.4), where n indexes the centre of the original mother wavelet and m E 7L is the scale 
parameter. Using (2.6). it is easily seen that the asymptotic behaviour of h,"(x, y) in x is 
governed by the asymptotic behaviour of h.(P), and the one in y by that of the Fourier 
transform of h,(P). Since in the present case, h,(P) has compact support (increasing 
monotonically with m), we expect H,,,,(x, y) to be strongly localized in x and delocalized 
in y, and that its decay in x gets faster for smaller m. This is indeed the case, as may be 
seen by an explicit computation along the same lines as above. We omit the details since 
they do not add much to the previous computation. 

4. The Littlewood-Paley basis 

One can find in the literature 1131 another simple example of an ON set of wavelets which 
forms a basis of Lz(R) coming from multiresolution analysis. This is the Littlewood-Paley 
basis, generated from the mother wavelet 

The behaviour of this function is, in a sense, complementary to that of the Haar wavelet: it 
is very well localized in frequency space (it has a compact support) 

e-1/2--x+iy e-l/8-(x-iy)/Z 4 i~Y/ze-~ '~{ ( I + - 2  
x - i y  x - iy -~ -1  x - i y + ?  

~ ( x )  = ( i t~ ) -~ ( s in2ax  - sinitx) . (4.1) 

while, as one can see from (4.1), it decays lie I/x in configuration space. 
We will see that an analogous complementary behaviour is also found for the 

wavefunctions in the LLL. We will show, in fact, that they are exponentially localized 
in the y-variable, while in the other variable they will behave like l/x. 

In order to perform the integration in (2.6), it is convenient to use the Fourier transform 
of Y,,(x) = 2-"/2Y(2-mx - n). We have 
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(4 
Figure 2. (a )  Dependence of I*v,(x.y)J on x and y. (b) Dependence of IVv, (x,y) l  on x .  
(e) Dependence of I*v,(x,y)I on y .  

where we have defined the set D = [-2ir, -RI U [R, 2x1. The order of integration can 

Performing the simple Gaussian integration in P, we find 
be exchanged as one can see easily by using Fubini's theorem, see [20]. 

which can again be explicitly computed, in terms of the error integral already used in the 
previous section. We get 

x [ E ( z ' - ~ R  - ( y  + ix) - in2") - E ( z . - ~ R  - ( y  + ix) - in2'") 

+ E ( z ' - ~ R  + ( y  + ix) + i n P )  - ~ ( q - ~ i r  + (y + ix) + inY)} . (4.4) 
This expression is rather similar to the one in (3.4). For m = n = 0, in particular, we obtain 

+a ( 2 ~  + y + ix) - x(n + y + ix)] . (4.5) 
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The modulus of the function qm is plotted in figures 2@), 2(b) and Z(c). Again in the 
three pictures we use different points of view in order to show the different decay properties 
of IY,&, y ) l  in the two variables. We see that IYm(x, y) I  goes to zero very rapidly in y .  
whereas its decay is rather slow in x .  

This result can be made rigorous by using again the asymptotic formula for the error 
function. We find 

J-P Antoine and F Bagareflo 

e-ixy/2e-9/2 eWy+ix) e-29 ,n(y+!x) e-x2/2 + I -  [ZTC - y - i x  Irt - y - ixl %I(x, Y )  = b5/4 

(4.6) 

which displays the exponential decay of IYm(x, y)I in y and the slow decay in x ,  as 
observed on figure 2. 

We see here the announced complementarity with respect to the Haar basis: the first 
one is better localized in x ,  the other one in y .  

1 e-zn(y+ir) e-2nz ,-x(y+ir) e-x2/2 + 
12n:+y+ixl In+y+ix l  

- 

5. Conclusion 

We have discussed general new ON bases for the LLL and we have given some details on 
two particular examples of these bases. 

Since the basis functions in our exainples have a rather slow asymptotic decay, we do 
not expect them to be a good choice for single electron wavefunctions in a Hartree-Fock 
computation of the Coulomb interaction for intermediate electron density. However, they 
can give interesting results for low density, where the electrons are supposed to be far 
enough from each other, so that their wavefunctions overlap very little. Again the scale 
parameter m may be used for controlling precisely the size of that overlap. 

Moreover, the technique introduced here may be exploited for construciing a basis better 
adapted for describing a system like o m ,  which is symmetric with respect of the exchange 
of the variables. 

Appendix A. Orthonormal bases of wavelets 

The wavelet transform (WT) is by now a well established tool in many branches of physics, 
such as acoustics, spectroscopy, geophysics, astrophysics, fluid mechanics (turbulence), 
medical imagery,. . . (see [211 for a survey of the present status). Basically it is a time- 
scale representation, which allows a fine analysis of non-stationzuy signals and a good 
reconstruction of a signal from its WT, both in one and in two dimensions (image processing). 

The basic formula for the (continuous) WT of a one-dimensional signal s E L2(R) reads 
x - b  

S(a, b)  = a-'/* s F (--) s ( x )  dr 

where a > 0 is a .scale parameter and b~ E R a translation parameter. Both the function 
@(x) ,  called the analysing wavelet, and its Fourier transform F ( w )  must be well localized, 
and in addition JI is assumed to have zero mean: 

J I ( x ) d X = O .  s 
Combined with the localization properties, this relation makes the WT (A.1) into a local 
filter and ensures its efficiency in signal analysis and reconstruction. 
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However, in practice, one often uses a discretized WT, obtained by restricting the 

S. J A  - - 2-j12 F ( 2 - j ~  - k )  s(x) dx j ,  k E Z. (A.3) 

Very general functions @ satisfying the admissibility conditions described above will yield 
a good WT, but then the functions ( @ j , k ( x )  = 2j12@(2jx - k) ,  j ,  k E E }  are in general 
not orthogonal to each other! One of the successes of the WT was the discovery that it is 
possible to construct functions @ for which (@jj.k, j ,  k E Z] is indeed an orthonormal basis 
of LZ@). In addition, such a basis still has the good properties of wavelets, including 
space and frequency localization. This is the key to their usefulness in many applications, 
including the present one. In the rest of this appendix, we will briefly sketch the construction 
of these ON bases of wavelets. The full story may be found, for instance, in [13]. 

The construction is based on two facts: first, almost all examples of orthonormal bases 
of wavelets can be derived from a multiresolution analysis, and then the whole constktion 
may be transcnpted into the language of quadrature mirror filters (QMF), familiar in the 
signal processing literature. 

A multiresolution analysis of L2(R) is an increasing sequence of closed subspaces 

parameters a and b in (A.1) to the points of a lattice, typically a dyadic one: 

’ ’. c v-2 c’ v-1 c V , ~  c VI c v, c . ’. (A.4) 
with UjsE C; dense in L2(R) and n,,, Vj = (01, and such that: 

(2) there exists a function @ E V,, called a scaling function, such that [@(x - k) ,  k E Z} is 

Combining (1) and (2), one gets an ON basis of C;, namely (@j,k(x) = 2j12@(2jx - k ) ,  
k E 23. 

Each C; can be interpreted as an approximation space: the approximation o f f  E Lz(R) 
at the resolution 2’ is defined by its projection onto v;:. The additional details needed 
for increasing the resolution from 2j to 2jtl are given by the projection of f onto the 
orthogonal complement Wj of v;: in !&I: 

(1) f ( x )  E v;: f ( 2 x )  E btI 

an ON basis of VO. 

v;: @ wj = C;+1 (A.5) 
and we have 

@ wj = LZ(R). (A.6) 

Then the theory asserts the existence of a function @, called the mother of the wavelets, 
explicitly computable from 6, such that [ @ j , k ( x )  2j/2@(2jx - k ) ,  j ,  k E Z] constitutes 
an orthonormal basis of Lz(Iw) : these are the orthonormal wavelets. 

The construction of @ proceeds as follows. First, the inclusion VO c VI yields the 
relation 

6(x) = f i ~  hn6(2x - n)  h, = ( @ I , ~ I @ ) .  (A.7) 

j E E  

m 

n=-m 

Taking Fourier transforms, this gives 

where 

. .  

= mo(a/2)i&/2) (A.8) 
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is a k-periodic function. Iterating (A.@, one gets the scaling function as the (convergent!) 
infinite product 

$(U) = (2n) - ' Izn  mO(Z-'o). (A.10) 

J-P Antoine and F Bagarello 

m 

j=1 

Then one defines the function @ E WO c V I  by the relation 

= ,io/' mo(o/2 + x )  &W/Z) 
or, equivalently 

(A.ll) 

(A.12) 

and proves that the function @ indeed generates an ON basis with all the required properties. 
Various additional conditions may be imposed on the function @ (hence on the basis 

wavelets): arbitrary regularity, several vanishing moments (in any case, @ always has mean 
zero), fast decrease at infinity, even compact support. The technique consists in translating 
the multiresolution structure into the language of QMF filters, and putting suitable constraints 
on the filter coefficients h,. For instance, @ has compact support if only finitely many h. 
differ from zero (in technical terms, {hJ is a FIR filter). Notice that the correspondence 
h, + (-l)"-Ih-"-l between the Fourier coefficients of $J and @ in (A.7) and (A.12) 
expresses precisely the fact that the pair (4, @) generates a QMF. 

The simplest example of this construction is the Haar basis discussed in section 3, which 
comes from the scaling function $J(x )  = 1 for 0 < x < 1 and 0 otherwise. Similarly, the 
linear spline function e ( x )  given in (2.7) yields the wavelet (2.8). Other explicit examples 
may be found in [13]. 
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